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Abstract 

Background Healthcare services efficiency (HSE) is directly related to the healthcare demands of the general public 
and also plays an essential role in the country’s coordinated economic and social development.

Methods In this study, the stochastic frontier approach (SFA)-Malmquist model was applied to measure the HSE 
of 31 Chinese provinces based on panel data from 2010–2020. Then, kernel density estimation, Markov chain, 
and exploratory spatial data analysis were adopted to study the temporal-spatial dynamic evolution characteristics 
of the HSE.

Results The study found that China’s HSE showed an average value of approximately 0.841, indicating room 
for improvement. The HSE varied significantly across regions, presenting an “East > Central > West” distribution layout. 
The TFP of healthcare services in China grew by 1.6% per year, driven mainly by technological progress of 1.8% 
per year. The trend of the HSE shifting to a high level in China was significant, but its evolution exhibited stabil-
ity of maintaining the original state, and it was harder to achieve leapfrog transfer. The temporal-spatial evolution 
of the HSE was also significantly affected by geospatial factors, with a clear spatial spillover effect and spatial agglom-
eration characteristics. Provinces with high-level HSE exhibited positive spatial spillover effects, while provinces 
with low-level HSE had negative spatial spillover effects. Thus, the “club convergence” phenomenon of “high efficiency 
concentration, low efficiency agglomeration, high levels of radiation, and low levels of suppression” was formed 
in the spatial distribution.

Conclusions The results indicate that countermeasures should be taken to improve the HSE in China. Theoretical 
support for the improvement of HSE is provided in this paper.
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Text box 1. Contributions to the literature

• Literature gaps are still present on how to clearly portray the temporal-
spatial evolutionary characteristics of the HSE.

• This national study comprehensively discusses the overall picture 
of the HSE level and its temporal-spatial evolution in Chinese provinces.

• Regarding temporal evolution, although the overall level of HSE 
in China has improved, the difference between high- and low-HSE prov-
inces has expanded, and the probability of low-HSE provinces transition-
ing to high-HSE provinces is considerably low.

• Regarding spatial evolution, China’s HSE exhibits evident spillover 
effects and agglomeration characteristics.

• These findings contribute to literature gaps that provide theoretical 
support for governments in improving HSE.

 
Introduction
Healthcare services are fundamental to establishing 
China’s public service system. The level of the healthcare 
services efficiency (HSE) and the efficiency differences 
among regions not only restrict the public demand for 
quality and fair healthcare services to a large extent 
but also impact the economic development and social 
stability. The Chinese government has permanently 
attached importance to the healthy development of the 
healthcare sector. China’s National Health and Sani-
tation Commission issued the Action Plan for Further 
Improvement of Medical Services (2018–2020) in 2017, 
which specifies the work objectives of promoting the 
high-quality development of healthcare services and 
gradually forming a synergistic and integrated regional 
medical service model [1]. In 2022, the State Council 
issued the Outline of the 14th Five-Year Plan (2021–
2025) for National Economic and Social Development 
and Vision 2035 of the People’s Republic of China; it 
asserts that the priority should be enhancing the qual-
ity of healthcare delivery and progressively eliminat-
ing disparities between urban and rural areas, regions, 
and people in terms of service capacity and health level 
[2]. Supported by these policies, China has made sig-
nificant progress in the field of health care, such as the 
establishment of healthcare alliances and the improve-
ment of the health insurance system for residents [3, 4]. 
These changes have given rise to a number of positive 
impacts, including an increase in health supply capac-
ity and volume levels and a reduction in the burden of 
access to health care for the population. The number of 
health technicians per 1,000 people in China increased 
from 4.37 in 2010 to 7.97 in 2021, and the number of 
beds in health facilities per 1,000 people has increased 
from 3.58 to 6.7 during the same period. The propor-
tion of personal health expenditure to total health 
expenditure in China has also decreased, from 35.3% in 
2010 to 27.6% in 2021 [5]. However, there is still a gap 

between the supply of healthcare services in China and 
the expanding demand of the masses for high-quality 
medical services [6], and the medical and health service 
system still faces problems, including the inadequate 
and unbalanced allocation of health resources and inef-
ficient medical services [7, 8]. This has severely impeded 
the healthy growth of China’s healthcare services and 
has rendered citizens unable to satisfy their medical ser-
vice demands completely. Moreover, to improve an effi-
cient and high-quality medical and healthcare service 
system and meet the population’s increasingly diverse 
medical needs, we must increase the HSE while using 
limited medical resources and ensuring coordinated 
development between medical services and the health 
level in various regions. Thus, effectively improving HSE 
has become an urgent and essential issue.

Until now, the HSE has been extensively investigated by 
scholars [9–13]. However, these studies have had short-
comings. First, most studies have typically focused on the 
micro level (i.e., the efficiency assessment of healthcare 
institutions such as hospitals, nursing homes, and health-
care service centers), neglecting a macro-level assessment 
of the efficiency of the entire healthcare delivery system 
in the country [14]. However, micro-level studies have 
struggled to clearly reflect the internal heterogeneity of 
HSE regional development [15]. Second, most scholars 
have tended to use DEA and its extensions to assess the 
HSE, but this approach attributes all deviations from the 
validity boundary to inefficiencies, which affects the accu-
racy of the analyses [16]. Although the stochastic frontier 
analysis (SFA) model can overcome these limitations, 
it has been relatively underutilized in assessing the HSE 
[17]. Finally, existing studies have mainly concentrated on 
the measurement, spatial effects, and influencing factors 
of the HSE, while relevant studies on the features of the 
temporal-spatial evolution of the HSE have been miss-
ing. Further, the study of the temporal-spatial dimensions 
of HSE will help in the optimization and adjustment of 
resource allocation and related policies [18]. In summary, 
after thoroughly considering China’s current policy con-
text and existing research gaps, what is the true level of 
HSE at the macro level in China? What are the charac-
teristics of the temporal evolution of the HSE in China? 
What is the spatial evolution pattern of the HSE in China? 
All of these questions deserve further examination.

Based on the above considerations, the objective of 
this study was to accurately evaluate HSE in all 31 prov-
inces of China at a macro level by utilizing the SFA model 
and Malmquist indexes and to uncover the regional dis-
parities, temporal-spatial distributions, and evolutionary 
patterns of the HSE in China by integrating the kernel 
density estimation, the Markov chain model, and explor-
atory spatial data analyses. Through this research, we can 
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not only provide a clear outline for policymakers and 
stakeholders to understand the temporal-spatial features 
of HSE at the provincial level in China but also optimize 
the allocation of regional healthcare resources, promote 
the healthy development of the healthcare industry, and 
create a practical reference for other countries facing 
inefficiencies in healthcare services.

Consequently, the main contributions of this study 
are as follows: (1) It applied the SFA-Malmquist model 
to assess the HSE of 31 provinces in China from 2010 
to 2020 in both static and dynamic dimensions, which 
makes up for the shortcomings in the research method-
ology. (2) By combining the kernel density estimation 
model and the Markov chain model, the time-evolving 
characteristics such as the distributional differences and 
transfer trends of HSE in 31 provinces in China were 
investigated in depth, which expands the related research 
on HSE. (3) By using exploratory spatial data analysis, 
we further explored the spatial evolutionary features 
such as spatial correlation and agglomeration of the HSE 
in China from 2010 to 2020, which enriches the related 
research on the HSE.

The remainder of this paper is organized as follows. 
Section  2 reviews the literature on HSE evaluation and 
the temporal-spatial features of the HSE. Section  3 
describes the methodology, indicator selection, and data 
sources for this paper. Section 4 provides the findings of 
the empirical analyses in this study. Section  5 provides 
the relevant discussion. Section  6 presents the study’s 
conclusions and limitations.

Literature review
Efficiency and productivity assessments of HSEs
Efficiency describes the relationship between inputs and 
maximum outputs per unit of resources, which is an 
appropriate index for evaluating the level of healthcare 
delivery [19]. Moreover, accurate and effective efficiency 
assessments help policymakers and stakeholders for-
mulate and optimize appropriate policies [20]. Thus, the 
assessment of efficiency and productivity has been the 
focus of researchers in the healthcare field. However, no 
consensus exists among scholars on the optimal way to 
measure efficiency and productivity. In previous studies, 
nonparametric and parametric approaches are the most 
popularly employed research methodologies by domestic 
and foreign scholars. However, the former methods are 
more frequently used than the latter [20].

Among the nonparametric methods, DEA models and 
their extended forms are widely used to evaluate the HSE 
at the macro or micro levels. At the macro level, Sherman 
[21] first applied DEA to health care to assess whether 
relevant resources are being effectively used through effi-
ciency. On this basis, researchers have further expanded 

the measurement of the HSE. Research methods have 
also gradually evolved from traditional DEA models to 
more comprehensive and efficient DEA models. These 
include the multistage DEA model [22, 23], the Super-
SBM model [24], the Bootstrap DEA model [25], the 
game-crossover DEA model [26], and the dynamic net-
work DEA model [27]. Some studies have also used the 
Malmquist productivity index to deconstruct the HSE 
[28, 29]. At the micro level, Valdmanis [30] used the DEA 
model to analyze the performance of Michigan hospitals. 
Subsequently, scholars have extensively used DEA and its 
extensions to assess the efficiency of healthcare organiza-
tions such as hospitals [31–34].

Still, as research has progressed, the shortcomings 
of the DEA model—namely its inability to separate the 
influence of random error terms and to statistically test 
hypotheses about inefficiency—have become increasingly 
prominent [35]. Additionally, the DEA model assumes 
constant returns to scale and that all decision-making 
units (DMUs) operate under the same production tech-
nology. It also assumes that inputs and outputs can be 
measured accurately and that no external environmental 
factors that affect efficiency exist [36]. In contrast, the 
SFA model assumes that DMUs operate under a stochas-
tic production or cost frontier, allowing for random noise 
and inefficiency. It also assumes that the inefficiency is 
independently and identically distributed across DMUs 
and that the error term in the production or cost func-
tion follows a specific distribution, often assumed to be 
half-normal or truncated normal [37].

On this basis, the parametric approach represented by 
the SFA model has also been used to evaluate HSE at a 
macro or micro level. At the macro level, scholars have 
utilized the SFA model with different specifications to 
assess the HSE among different countries. For exam-
ple, Kinfu [38] measured the HSE of the South African 
health system using the specifications of Aigner et  al. 
(1977) and Broeck et al. (1977). De Cos [39] assessed the 
HSE in 29 OECD countries based on the specification 
of Schmidt and Sickles (1984). Ogloblin [40] evaluated 
the HSE in 78 countries using the specifications of Bat-
tese and Coelli (1995). In addition, several scholars have 
assessed the HSE using a true random or fixed-effects 
model [41, 42]. However, only a few studies have applied 
SFA to assess the HSE in China. Wen et al. [43] used the 
specifications of Battese and Coelli (1995) to assess the 
performance of the HSE in 31 provinces in China from 
2009 to 2018. Li et al. [44] used the same methodology to 
evaluate regional HSE in China between 2009 and 2018. 
Kang et  al. [45] compared the HSE between China and 
the Association of Southeast Asian Nations countries 
from 2015 to 2020 based on the specifications of Aigner 
et al. (1977) and Broeck et al. (1977). At the micro level, 



Page 4 of 24Ye and Tao  Archives of Public Health          (2023) 81:197 

owing to the vital role of hospitals in the healthcare sys-
tem, studies have increasingly used SFA to evaluate 
various efficiencies in hospitals [46–48]. However, few 
studies have utilized SFA to measure hospital efficiency 
in China. Xu et  al. [49] investigated 50 public hospitals 
in the Chinese city of Beijing using the specifications of 
Battese and Coelli (1995). Chen et  al. [50] introduced a 
Bayesian SFA model to assess the cost efficiency of Chi-
nese provincial hospitals. Wei et  al. [51] constructed a 
hospital-level fixed-effects stochastic frontier model and 
5-year panel data from 89 hospitals to study the cost effi-
ciency of Chinese hospitals. In addition, several scholars 
have evaluated the efficiency of healthcare systems and 
healthcare organizations using econometric models as 
well as functional models of production, cost, and dis-
tance. Evans et al. [52] estimated the HSE of 191 national 
health systems based on econometric modeling. Zhang 
et  al. [53] measured the efficiency of China’s healthcare 
delivery system in 2010 using the Cobb–Douglas produc-
tion function. Shen [54] assessed the technical efficiency 
of operating hospitals in China from 2009 to 2016 using 
an aggregated directional distance function. Li [55] ana-
lyzed the cost efficiency of Washington State hospitals 
using a stochastic frontier Leontief cost function.

Research on the temporal‑spatial characteristics of the HSE
Little research has been done on the temporal-spatial 
performance of the HSE, and most research has been 
based on methods such as the spatial econometric model. 
Piedra [56] confirmed the existence of a positive spatial 
effect between the efficiency of public hospitals in Ecua-
dor. Longo [57] investigated whether hospitals in the UK 
National Health Service improved the efficiency of adja-
cent hospitals and found that there was no spatial effect 
between hospitals in terms of efficiency. Mard [58] stud-
ied the impact of socioeconomic and demographic fac-
tors on health efficiency among Tunisian governorates 
and found that education had a positive influence on the 
efficiency of the healthcare system in both the region and 
its neighboring areas. However, the impact of unemploy-
ment was negative. Felder [59] confirmed that the HSE at 
the regional level in Germany was influenced by spatial 
dependence. Cavalieri [60] found that regional and insti-
tutional factors were more likely to affect heterogeneity 
in hospital efficiency across Italy than proximity effects.

Few studies have investigated the temporal-spatial 
characteristics of the HSE by applying quantitative meth-
ods such as kernel density estimation, spatial autocor-
relation analysis methods, and Markov chain models. Li 
et  al. [61] combined data envelopment analysis, kernel 
density estimation, and other methods to investigate the 
temporal-spatial characteristic of rural HSE in 29 regions 
of China from 2004 to 2018. The study found that China’s 

rural HSE is growing slowly and that the inter-regional 
HSE shows a spatial pattern of "high center, low west." 
Wang et al. [18] used the Super-SBM model to estimate 
the HSE of 284 Chinese cities from 2009 to 2019 and 
explored the spillover effects and dynamic transfer trends 
of urban HSE with the Markov chain model. The results 
indicate that high potential exists for a shift from inter-
mediate to high levels of HSE in each location. Urban 
HSE exhibits a progressively decreasing spatial layout 
with urban agglomeration cities at its core. Wu et al. [62] 
collected panel data from 2010 to 2019 to calculate the 
efficiency of primary healthcare services in central and 
western regions through the Super-SBM model, and they 
further analyzed the temporal-spatial variation patterns 
in efficiency by employing kernel density estimation and 
the Markov chain. They found an aggregation effect for 
both high and low primary healthcare services efficien-
cies in the study, which makes it difficult to achieve sig-
nificant efficiency improvement in the short term. Chen 
et al. [63] measured the imbalance of health service sup-
ply in 31 provinces of China from 2005 to 2020 by the 
modified entropy method and investigated the tempo-
ral-spatial evolution trends of the health service supply 
capacity by using kernel density estimation and Markov 
chain. Studies have shown that the health service supply 
capacity in China is on an upward trend. However, the 
health service supply capacity is characterized by spatial 
imbalances, with the east being higher than the center.

By combining the above literature, we identified that the 
following deficiencies still exist in the study of the HSE. 
First, research on the HSE has focused on specific types 
or individual cities at the institutional level, i.e., with the 
institution as the unit of analysis. However, relatively few 
studies have been conducted on the assessment of the 
HSE performance at the system level on a national scale 
[64]. Second, most scholars have preferred to use the DEA 
models and their extended forms to study the HSE, while 
few scholars have used econometric models and func-
tional models such as production, distance, and cost for 
their studies. However, the DEA model assumes no ran-
dom errors and attributes all deviations from the efficient 
frontier to be caused by inefficiencies [65]. Further, mod-
els based on functions and econometrics are deterministic 
without sufficient consideration of random disturbances 
in the data. Moreover, related studies have employed the 
SFA model mainly from a static perspective and have not 
adequately considered the sources of dynamic changes 
in efficiency. Finally, existing studies have mainly exam-
ined the spatial effects of the HSE and its influencing fac-
tors only from a unitary perspective of time or space, and 
few studies have comprehensively and systematically dis-
cussed the temporal-spatial evolution process of the HSE 
[66, 67]. More importantly, the absence of a reasonable 
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temporal-spatial analysis method usually leads to less com-
prehensive analysis and less accurate results [68].

Aiming at the deficiency of existing research, we made 
improvements in the following dimensions. First, regarding 
the research methodology, the main drawback of the DEA 
model is its assumption that there is no inefficiency meas-
urement error or statistical noise. These statistical errors can 
lead to inaccurate efficiency scores and potentially misrep-
resent the true efficiency levels of DMUs. However, the SFA 
model deals with the effect of statistical noise (e.g., measure-
ment error) and inefficiency error terms (i.e., inefficiency 
error that is controllable but does not reach the optimal part 
of the DMUs) on the results by explicitly assuming the form 
of the frontier production function and the distribution of 
the inefficiency term [69]. Moreover, as a benchmark or 
boundary method, SFA can effectively estimate the produc-
tion level of DMUs considering the random perturbation 
of data [70]. Thus, this study evaluated China’s macro-level 
HSE using the SFA model with a parametric approach, 
which improves the accuracy of the efficiency assessment. 
Second, we adopted the Malmquist index, a nonparametric 
model proposed by Caves [71], to overcome the shortcom-
ings of SFA in capturing the source of productivity change 
and understand the drivers behind these changes. Finally, 
we simultaneously applied three quantitative analysis meth-
ods, namely, kernel density estimation, Markov chain, and 
spatial autocorrelation analysis, to deeply investigate the 
temporal-spatial correlation features of China’s HSE and its 
evolutionary pattern. The reason we used all three methods 
together is that, first, the kernel density estimation method 
provides a temporal series static analysis of the overall level 
of regional efficiency. Second, the Markov chain model 
allows for further analyses of the trends in time-series 
dynamic shifts in efficiency levels from the perspective of 
provinces independently. These two approaches supple-
ment each other considerably from the overall to the local 
context. Finally, geospatial factors were introduced into the 
study through exploratory spatial data analysis methodology 
to investigate the spatial evolution of China’s HSE. These 
three approaches intertwine and complement each other, 
making our study more comprehensive.

Methods and materials
Efficiency measurement
Stochastic frontier analysis
Traditional production functions assume that producers 
obtain the greatest output with the fewest inputs; how-
ever, not all producers successfully overcome optimization 

issues [72]. To address this challenge, Aigner and Schmidt 
(1977) and Meeusen and Broeck (1977) [73, 74] developed 
the SFA model, which has had a major impact on produc-
tive econometric modeling and assessing the technical 
efficiency of firms. Later, scholars such as Battese [75, 76] 
refined the SFA model, mainly in terms of the treatment of 
inefficiencies and the application of panel data. Moreover, 
owing to the extensive research period in this paper, it is 
difficult to guarantee complete stability of individual effi-
ciency. Furthermore, considering that the inefficient part 
of the HSE may change over time, we conducted our study 
based on the time-varying random-effects frontier model 
proposed by Battese et al. (1992) [77], which is given below.

In Eq. (1), Yit is the output; f (xit;β) is the production 
function; xi is the input factor vector, which is the vector 
of its coefficients to be estimated; vit is used to represent 
the effect of statistical error and various stochastic fac-
tors on the frontier output; and uit ≥ 0 is a time-varying 
technical inefficiency term that measures the relative 
production efficiency level and is independent of vit.

Further, we quantitatively describe the effect of the 
timing factor on the inefficiency term uit.

In Eq. (2), T  is the total periods used in the study, and 
η is a time-varying coefficient to be estimated, reflect-
ing the magnitude of the rate of change in technical 
efficiency. If η < 0 , β(t) increases with t , and technical 
efficiency decreases; if η > 0 , β(t) decreases with t and 
technical efficiency improves; and if η = 0 , β(t) does 
not change over time, and the technical efficiency does 
not change either.

Finally, owing to technical inefficiency and random 
noise, it is challenging for producers to achieve the 
frontier level of the production function. A producer’s 
technical efficiency (TE) is expressed by the ratio of the 
expectation of the producer’s output in the sample to the 
expectation of the stochastic frontier, as shown in Eq. (3).

Production function setting for the SFA model
Following the study of Coelli et al. [78], we specify two 
forms of production function in the SFA model (i.e., 
Cobb-Douglass or Translog functional forms). How-
ever, researchers have different views on the usage of 
these two functions [79, 80].

(1)
Yit = f (xit;β )exp(vit − uit), where i = 1, 2, . . . , n

(2)
uit = β(t)× ui, i = 1, 2, 3, . . . , n

β(t) = exp{−η × (t − T )}

(3)TEit =
E[f (xit ,β )exp(vit − uit)]

E f (xit ,β)exp(vit − uit)|uit = 0
= exp −µ it , where i = 1, 2, 3, . . . , n
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First, the logarithmic expression of the Cobb–Douglas 
functional form is as follows:

In Eq.  (4), Yit represents the output of healthcare ser-
vices for i DMUs in period t ; j represents the number of 
independent variables; xj,it indicates the corresponding 
input level of the ith decision unit at time t ; β0 is the con-
stant term intercept; βi is the parameter to be estimated; 
and vit and uit are the same as in Eq. (1).

Second, the Translog function provides a second-order 
approximation that is a flexible functional form. Thus, the 
Translog function is also known as the Cobb–Douglas 
extended form, and the expression is as shown below.

Finally, we adjusted the form of Cobb–Douglas accord-
ing to the current research purpose; the Cobb–Douglas 
production function of China’s healthcare services can be 
expressed as below.

In Eq.  (6), HSOit expresses the healthcare service out-
put of the ith decision unit at time t ; Lit denotes the cor-
responding labor input of the ith decision unit at time t . 
Kit denotes the corresponding capital investment of the 
ith decision unit at time t . β0 is the constant term inter-
cept; β1andβ2 are the parameters to be estimated; and vit 
and uit are the same as in Eq. (1).

In addition, if we extend the logarithmic of the 
Cobb–Douglas functional form, we obtain the loga-
rithmic of the Translog functional form for China’s 
healthcare services:

In Eq. (7), β0 is the constant term intercept; β1,β2,β3,β4 , 
and β5 are the parameters to be estimated; and the other 
variables have the same meaning as in Eq. (6).

Notably, the Cobb–Douglas function has the advan-
tage of having a simple model form with few parameters 
for easy estimation. However, it has the disadvantage 
of a fixed and constant factor elasticity of substitution. 
Although the Translog function overcomes this short-
coming, the Translog function is not necessarily superior 
to the Cobb–Douglas function. Thus, we followed the 

(4)LnYit = β0 +
N
∑

j=1

β iLnxj,it + vit − µit

(5)LnYit = β 0 +
N
∑

j=1

βiLnxj,it +
1

2

∑N

j=1

∑N

h=1
βjhLnxj,itLnxh,it + vit − µit

(6)LnHSOit = β0 + β1LnLit + β2LnKit + vit − µit ,wherei = 1, 2.3, . . . n

(7)

LnHSOit = β0 + β1LnLit + β2LnKit + 1

2
β3(LnLit )

2 + 1

2
β4(LnKit )

2

+β5LnKitLnLit + vit − µit

study of Kumbhakar et  al. [81] to select the production 
function suitable for this study. The specific test steps are 
as follows:

In Eq.  (8), the original assumption is 
H0 : β3 = β4 = β5 = 0 (i.e., the production function is 
assumed to be of the Cobb–Douglas form). Alternative 
assumption is H1 : β3,β4,β5 �= 0 (i.e., the production 
function is assumed to be of the Translog form). Ln(H0) 
represents the value of the log-likelihood function for the 
original hypothesis H0 . Ln(H1) represents the value of the 
log-likelihood function of the alternative hypothesis H1 . 
Furthermore, the statistic obeys a mixed �2 distribution, 
provided the original hypothesis holds.

Parametric tests of the production function for the SFA model
To find suitable production function forms for the SFA 
model, first, we examined which functional form is most 
suitable for this study using Eq. (8). Second, we examined 

the distribution of technical inefficiency in the produc-
tion function by utilizing the null hypothesis H0 : µ = 0 . 
This null hypothesis assumes that healthcare providers are 
all operating on the technical efficiency frontier and that 
there are no asymmetric and random technical efficien-
cies in the inefficiency effects (i.e., technical inefficiencies 
have a half-normal distribution). If µ  = 0 , then the tech-
nical inefficiency has a truncated normal distribution. 
Finally, we verified the presence of inefficiency by calcu-
lating the value of γ . The specific formula is as follows:

In Eq.  (9), γ represents the magnitude of the vari-
ance of the inefficiency term; δ2µ and δ2v  represent the 
variances of the inefficiency and random shock terms, 
respectively. If γ is close to 0, the statistical noise is per-
fectly correlated with the production variance. If γ is 
close to 1, a significant portion of the error term comes 
from technical inefficiencies.

Malmquist index
The SFA model cannot capture the dynamic sources 
of variation in efficiency since it can only evaluate the 

(8)LR = −2[Ln(H0)− Ln(H1)]

(9)γ =
δ2µ

δ2µ + δ2v
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static efficiency of each decision unit. Therefore, to 
examine the total factor productivity change in health-
care services in China, we used the Malmquist index 
(MI) model.

Total factor productivity (TFP) is a measure of the 
efficiency with which multiple inputs (such as labor and 
capital) are combined to produce output in a produc-
tion process. It captures the portion of output growth 
that cannot be explained by changes in the quantities 
of inputs used [82]. Caves constructed the Malmquist 
productivity index in 1982 [71]. It is assumed that in 
each period t = 1, 2, 3, . . . ,T  , the production unit trans-
forms the input et into the output pt according to the 
production technology St . Then, the Malmquist index 
can be expressed by the distance function [83], i.e., 
Dt
O = (pt , et) . Based on this, the Malmquist index in 

period t is defined below.

Similarly, the Malmquist based on period t+1 can be 
expressed as below.

According to Grosskopf et al. [84] and Färe et al. [85], 
the Malmquist index used in this study is the geometric 
mean of the two indices mentioned above, which avoids 
arbitrariness in the choice of the base period. The for-
mula is shown as follows:

In Eq.  (12), if MI > 1 , it denotes a relative growth in 
TFP. If MI < 1 , it denotes a relative decrease in TFP. If 
MI = 1 , it indicates no change in TFP.

Accordingly, the Malmquist index can be divided into 
the two components below.

In Eq. (13), the MI decomposes the TFP change (tfpch) 
into two components: technical change (techch) and 
technical efficiency change (effch) [86]. effch denotes the 
level of improvement resulting from the technological 

(10)Mt
O =

Dt
O = (pt+1, et+1)

Dt
O = (pt , et)

(11)Mt+1
O =

Dt+1
O = (pt+1, et+1)

Dt+1
O = (pt , et)

(12)Malmquist Index = Mt
O

(

pt+1, et+1, pt , et
)

=

[(

Dt
O =

(

pt+1, et+1
)

Dt
O =

(

pt , et
)

)(

Dt+1
O =

(

pt+1, et+1
)

Dt+1
O =

(

pt , et
)

)]
1
2

(13)
MalmquistIndex = Mt

o

(

pt+1, et+1, pt , et
)

= Dt+1
O

(

pt+1,et+1
)

Dt+1
O (pt ,et)

[(

Dt
O

(

pt+1,et+1
)

Dt+1
O (pt+1,et+1)

)(

Dt
O(p

t ,et)
Dt+1
O (pt ,et)

)]
1
2

= techch× effch = techch× (pech× sech)

innovation that occurred between period t and period 
t+1 [87]. techch is used to evaluate the impact of changes 
on production fronts as they are sent. Further, effch 
comprises two components: pure efficiency (pech) and 
scale efficiency (sech). Pech estimates the managerial 
efficiency of DMUs, while sech estimates the appropri-
ateness of the scale of DMUs.

Time‑evolution analysis
Kernel density estimation
To reflect the information on the distribution pattern 
and extension of the HSE in China, we used kernel den-
sity for estimation in this paper. Kernel density estima-
tion is a nonparametric approach for kernel estimation. 
In this method, discrete variables are connected by 
smooth curves, while the distribution of random vari-
ables is represented by sequential of density curves [88, 
89]. The basic principle is to assume that the random 
variables X1,X2, . . . ,XN  are independently and identi-
cally distributed. Their density functions are denoted 
by f (x) , and the kernel density is estimated as shown 
below.

In Eq. (14), n is the number of Chinese provinces stud-
ied in this work; Xi is the observed value, i.e., the HSE of 

each province, and x is the average of the observed val-
ues; K (•) is a Gaussian kernel function, which can be 
represented by Eq.  (15); and h is the bandwidth, which 
determines how accurately the kernel density curve is 
estimated. In this paper, by referring to Sliverman [90] 

approach, we set the bandwidth as below.

(14)f (x) =
1

nh

n
∑

i=1

K

(

Xi − x

h

)

(15)K (x) =
1

√
2π

exp

(

−
x2

2

)

(16)h = 1.06δN− 1
5
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In Eq.  (16), δ is estimated by min{s,Q/1.34} , s is the 
sample standard deviation, and Q is the interquartile 
spacing.

Markov chain
While kernel density estimation can capture the distri-
bution pattern of HSE over time as a whole, it does not 
deeply reflect the intrinsic dynamic trends and character-
istics of the distribution. To address this challenge, a pos-
sible approach is to explore the internal dynamic trends 
of HSE in each region by estimating the transition prob-
ability matrix associated with Markov chains [91].

Markov chains are models of stochastic processes pro-
posed by the Russian mathematician Markov. Markov 
chains treat random variables as discrete states and can 
be used to examine the mobility of the internal distribu-
tion between levels by calculating the probability of shift-
ing the variables up or down a level after a time change 
through maximum likelihood estimation [92]. Thus, we 
adopted a Markov chain model to construct the state 
transfer probability matrix to meticulously grasp the rela-
tive state changes between high and low Chinese HSE at 
a specified time, as well as the possibility of changes. The 
specific steps are as follows:

A Markov chain behaves as a stochastic process 
{X(t), t ∈ T } , where the set T  of indices in this stochas-
tic process corresponds to the individual periods. Then, 
for all periods t and all possible states i , j , they satisfy the 
condition of Eq. (17).

Equation  (17) indicates that the state of the random 
variable X at period t − 1 determines the probability of it 
being in state j during period t.

Let X(t) = j ; in other words, j represents the state in 
period t , while Pij denotes the probability of all the tran-
sitional probabilities. Here, we classify the HSE of prov-
inces into four types based on the quartiles (0.25, 0.5, 
and 0.75 division points), with the types indicated as 
K = 1, 2, 3, 4 . The traditional Markov dynamic transfor-
mation probability matrix is illustrated in Table 1.

In Table 1, Pij means the state transfer probability that 
the HSE in period t is of state i and shifts to state j in 
period t + 1 . It can be expressed as Pij=nij/ni , where nij 
indicates the summation of the number of districts in 
state i in period t , and the count of districts transfers to 
state j in period t + 1 ; ni means the summation of the 
number of districts with state j in all years. Then, we can 
construct a 4 × 4 transfer probability matrix by catego-
rizing the HSE into four kinds. Thus, we can analyze the 
dynamic transition trend and evolutionary pattern of the 

(17)

P =
{

X(t) = j
∣

∣X(t − 1) = i,X(t − 2) = it−2, . . . ,X(0) = i0
}

= X(t) = j
∣

∣X(t − 1) = i

HSE in China and identify whether the dynamic transi-
tion trend is upward, downward, or unchanged.

Note that the traditional Markov chains still do not 
consider the effect of geographic and spatial factors 
on HSE transfer in China. Thus, to further analyze the 
spatial transfer trends of the HSE in 31 provinces in 
China, in addition to adding spatial lags to the tradi-
tional Markov transfer chain, we also constructed a spa-
tial Markov transfer matrix using the distance between 
neighboring provinces as the weight of spatial lags to 
explore the relationship between the dynamic transition 
probabilities of HSE in the province and neighboring 
provinces. The specific step is to include the correspond-
ing spatial lag term in the traditional Markov dynamic 
transformation probability matrix (K × K ) and expand 
it to the spatial Markov dynamic transformation prob-
ability matrix (K × K · · · × K ) [93]. As shown in Table 2, 
we extended the traditional Markov dynamic transfor-
mation probability matrix (4 × 4) of this study to a spa-
tial Markov dynamic transformation probability matrix 
(4 × 4 × 4 × 4) , which presents the probabilities of prov-
inces transitioning from state i to state j over the study 
period, considering the spatial lag terms I, II, III, and IV.

Spatial‑evolution analysis
Exploratory spatial data analysis (ESDA)
ESDA is a spatial econometric methodology for study-
ing the associations of a phenomenon in geospatial space 
with the values of attributes in neighboring elements 
[94]. As shown in Table  3, ESDA primarily consists of 
the global spatial autocorrelation analysis and local spa-
tial autocorrelation analysis, which are analyses of pos-
sible interdependencies and correlations between certain 
observations in a specific range [95]. Thus, this study 
applied the ESDA model to comprehensively reveal the 
overall spatial autocorrelation and internal agglomera-
tion features of the HSE in China.

Global autocorrelation
The global Moran’s I index was used to check for correla-
tions in the HSE in each province before doing the spatial 
correlation study. Moran’s I index is defined as follows:

Table 1 Traditional Markov dynamic transformation probability 
matrix

ti
/

ti+1
1 2 3 4

1 P11 P12 P13 P14

2 P21 P22 P23 P24

3 P31 P32 P33 P34

4 P41 P42 P43 P44
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In Eq. (18), n is the subject of the study (i.e., the over-
all number of provinces); yi and yj represent the HSE 
of the i province and j province, respectively; y is the 
mean value of yi and yj , and Wij is the neighboring space 
weight matrix. Moran’s I index takes values in the range 
of [−1, 1] . If the variable is positively correlated in space 
(Moran’s I > 0), provinces with higher (or lower) levels 
of HSE are more spatially clustered; if the variable is 
negatively correlated in space (Moran’s I < 0), there are 
spatial differences in the HSE between each province 
and its neighboring provinces. If the variable is spatially 
constant (Moran’s I = 0), then each province’s HSE ran-
domly distributes in each province in space [96].

Local autocorrelation
Local spatial autocorrelation analysis was used to analyze 
the spatial correlation between each spatial object and its 
neighboring units in a specific region to reflect the local 
characteristic differences in the distribution of spatial 
objects. It can overcome the global spatial autocorrelation 

(18)

Moran
′
s I =

∑

n

i=1

∑

n

j=1
Wij

(

yi − y
)(

yj − y
)

∑

n

i=1

(

yi − y
)2

×
n

∑

n

i=1

∑

n

j=1
Wij

analysis, which only considers a single value to describe 
the degree of spatial correlation between the items under 
study and disregards any possible instability defects in the 
local area [97]. Therefore, the local Moran’s I reveals the 
spatial clustering state of efficiency between a province 
and its neighboring provinces. Among them, the H–H 
type represents the high-value region of the HSE sur-
rounded by high-value adjacent units; the H–L type rep-
resents the high-value region surrounded by low-value 
adjacent units; the L-L type represents the low-value 
region surrounded by low-value adjacent units; and the 
L–H type represents the low-value region surrounded by 
high-value adjacent units.

Indicator selection
Health service input indicators
Most investments in healthcare services are measured in 
terms of human, financial, and material resources [98]. 
However, Grossman (1972) brought up that the finan-
cial investment in health services frequently covers the 
investment in hiring different types of technicians and 
the investment in purchasing medical equipment, which 
can cause double counting issues with the current input 
indicators. As a result, the input indicators only calcu-
late human and material capital input. In related studies, 
the number of health personnel, number of healthcare 
technicians, number of registered nurses, and number of 
licensed (assistant) doctors have usually been selected as 
inputs of human capital [99–101], while the number of 
beds, number of health facilities, and more than 10,000 
yuan of equipment have been used as inputs for material 
resources [102, 103]. Therefore, this study selected the 
number of health technicians per 1,000 population and 
the number of beds in medical and health institutions 
per 1,000 population as human capital input and material 
capital input, respectively.

Health service output indicators
In terms of output indicators, owing to the complex-
ity and particularity of the medical and health indus-
try, its output is usually measured by disease cures and 
improvement of people’s health, but these are difficult 
to quantify. Associated studies have used the number of 
emergency and outpatient visits, bed utilization, admis-
sions (discharges), and surgical inpatient visits as quan-
titative indicators of the supply of healthcare services to 

Table 2 Spatial Markov dynamic transformation probability 
matrix

Spatial lag term 
categories

ti
/

ti+1
1 2 3 4

l 1 P11
/1

P12
/1

P13
/1

P14
/1

2 P21
/1

P22
/1

P23
/1

P24
/1

3 P31
/1

P32
/1

P33
/1

P34
/1

4 P41
/1

P42
/1

P43
/1

P44
/1

II 1 P11
/2

P12
/2

P13
/2

P14
/2

2 P21
/2

P22
/2

P23
/2

P24
/2

3 P31
/2

P32
/2

P33
/2

P34
/2

4 P41
/2

P42
/2

P43
/2

P44
/2

III 1 P11
/3

P12
/3

P13
/3

P14
/3

2 P21
/3

P22
/3

P23
/3

P24
/3

3 P31
/3

P32
/3

P33
/3

P34
/3

4 P41
/3

P42
/3

P43
/3

P44
/3

IV 1 P11
/4

P12
/4

P13
/4

P14
/4

2 P21
/4

P22
/4

P23
/4

P24
/4

3 P31
/4

P32
/4

P33
/4

P34
/4

4 P41
/4

P42
/4

P43
/4

P44
/4

Table 3 Exploratory spatial data analysis (ESDA)

Methodology Purpose Output Format

Global autocorrelation Determine spatial correlation and detect spatial heterogeneity Spatial correlation Index

Local autocorrelation Determine the degree of aggregation and identify spatial distribution patterns Graphical display of spa-
tial clustering patterns
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reflect the output of healthcare resources [104–106]. As 
a result, we chose the number of outpatient and emer-
gency department visits, hospital discharges, and sur-
gical procedures performed in the hospital as output 
indicators. Since the standard SFA model is limited to 
a single output [107, 108], it is necessary to aggregate 
the number of outpatients and emergency department 
visits, hospital discharges, and surgical procedures per-
formed in the hospital into a single variable. Thus, refer-
ring to Xu et  al. [109], principal component analysis 
was used to logarithmically transform and weight the 
three indicators to create the output index, as each of 
the output indicators has its own bias, thus maximizing 
the amount of information that could be found in the 
output indicators.

Furthermore, to control the effect of heteroskedastic-
ity and ensure the smoothness of the data, all variables 
in this study were logarithmically transformed. The spe-
cific indicators and descriptive statistics of the input and 
output variables are presented in Table 4. The table shows 
that, from 2010 to 2020, the number of health technicians 
per 1,000 population and the number of beds in medical 
and health institutions per 1,000 population in China 
trended upward each year. The output index after trans-
formation with principal component analysis and the 
number of outpatient and emergency department visits, 
hospital discharges, and surgical procedures performed 
in the hospital increased every year from 2010 to 2019, 
then dropped slowly from 2019 to 2020.

Data source
The study’s data cover 31 provinces in China from 2010 
to 2020, excluding Taiwan, Hong Kong, and Macao. We 
divided the provinces into regions based on geographi-
cal differences: eastern, central, and western (shown 
in Fig.  1). The eastern region includes Beijing, Tianjin, 
Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, 
Shandong, Guangdong, and Hainan. The central part 
includes Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, 
Henan, Hubei, and Hunan. The western area includes 
Inner Mongolia, Chongqing, Guangxi, Sichuan, Guizhou, 
Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and 
Xinjiang. Moreover, the data are from the “China Statisti-
cal Yearbook” and “China Health Statistical Yearbook”.

Results of the empirical analysis
Estimation results of the production function for the SFA 
model
We estimated the Cobb–Douglas and Translog produc-
tion functions using maximum likelihood estimation. 
The results of the calculations are shown in Table  5. 
The table shows that the value of LR is − 234.396, while 
the mixed �2 distribution at a 5% level of significance 

is �20.05(3) = 7.82 . Evidently, the LR statistic is smaller 
than the critical value of the mixed �2 distribution. This 
implies that we should accept the original hypothesis 
that the Cobb–Douglas form is more appropriate for the 
production function of healthcare services in China. Fur-
thermore, in terms of the elasticity of output for health 
technicians (β1 = 0.303) and the elasticity of output for 
the number of beds in health facilities (β2 = 0.128) , for 
every 10% increase in the number of health technicians, 
the total output of health services increases by 3.03%. 
Similarly, for every 10% increase in the number of beds, 
the total output of health services increases by 1.28%.

Further, µ = 2.443(p < 0.01) in the Cobb–Douglas 
production function, which suggests that the truncated 
normal distribution is more appropriate for this study 
than the half-normal distribution in the distribution of 
technical inefficiency. Moreover, the value of γ is 0.995 
(p < 0.01) , which shows that 99.5% of the random error 
term is associated with the inefficiency error term and 
that only 0.5% is associated with the statistical error. 
Further, the estimated parameter η = 0.014(p < 0.01) 
demonstrates that the effect of the time factor on β(t) 
decreases at an increasing rate (i.e., the inefficiency com-
ponent of the technical efficiency decreases over time, 
and the HSE increases). Thus, compared with the fixed-
effects SFA model, which assumes that the inefficiency is 
time-invariant, the random-effects SFA model, assuming 
that the inefficiency is time-varying, is more suitable for 
this study [110].

Combined with the above analyses, we believe that a 
time-varying random-effects model truncating the nor-
mal distribution SFA model of the Cobb–Douglas form 
better fits the data in this study.

Static assessment of China’s HSE
According to the model suitability and robustness tests, 
we calculated the efficiencies using selected input and 
output variables and data and using the time-varying 
random-effects model truncating the normal distribution 
SFA model of the Cobb–Douglas form through the Fron-
tier 4.1 program. The results are shown in Table 6.

As can be seen from Table 6, the overall average HSE 
from 2010 to 2020 is less than 1, ranging from 0.830 to 
0.851, with an average yearly rise of 0.26%. This indicates 
that China’s total healthcare system efficiency can be 
improved.

From an inter-regional perspective (shown in Fig. 2a), 
the HSE is heterogeneous across regions. The eastern 
region has the highest efficiency, while the western region 
has the lowest efficiency. In particular, the mean value of 
HSE in the eastern part varies from 0.847 to 0.867, with 
an average annual growth rate of 0.22%; in the central 
region, it varies from 0.846 to 0.865, with an average 
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Table 4 Specific indicators and descriptive statistics of the input and output variables from 2010–2020

Period Input indicators (unit) Output indicators (unit)

Number of health 
technicians per 
1,000 population 
(Person)

Number of beds in 
medical and health 
institutions per 
1,000 population 
(bed)

Number of surgical 
procedures 
performed in the 
hospital (Persons)

Number of 
outpatient and 
emergency 
department visits 
(Person‑times)

Number 
of hospital 
discharges 
(Persons)

Output index after 
transformation 
with principal 
component analysis

2010 Mean 1.515 1.307 13.4 18.66 15 15.68

Median 1.484 1.258 13.61 18.78 15.21 15.8

SD 0.34 0.26 1.03 0.946 0.983 0.971

Min 0.908 0.92 9.917 16.04 11.95 12.63

Max 2.609 2.007 14.97 20.18 16.22 17.09

2011 Mean 1.562 1.37 13.52 18.73 15.08 15.77

Median 1.562 1.335 13.73 18.89 15.3 15.9

SD 0.333 0.242 1.025 0.949 0.978 0.969

Min 0.986 1.019 10.17 16.09 11.99 12.74

Max 2.653 2.022 15.12 20.26 16.3 17.19

2012 Mean 1.6 1.437 13.63 18.81 15.22 15.88

Median 1.609 1.463 13.86 19 15.44 16.04

SD 0.204 0.149 1.056 0.969 1.018 0.998

Min 1.109 1.001 10.06 16.08 11.88 12.66

Max 2.249 1.773 15.23 20.36 16.45 17.3

2013 Mean 1.694 1.514 13.72 18.88 15.3 15.96

Median 1.696 1.554 13.9 19.05 15.51 16.13

SD 0.311 0.131 1.022 0.961 0.989 0.974

Min 1.292 1.261 10.37 16.23 12.2 12.92

Max 2.738 1.802 15.29 20.42 16.48 17.35

2014 Mean 1.719 1.572 13.82 18.92 15.37 16.03

Median 1.714 1.591 13.97 19.12 15.59 16.18

SD 0.169 0.132 1.014 0.956 0.977 0.965

Min 1.399 1.322 10.54 16.33 12.35 13.06

Max 2.294 1.828 15.36 20.45 16.52 17.41

2015 Mean 1.767 1.627 13.85 18.93 15.4 16.05

Median 1.758 1.637 13.98 19.11 15.64 16.2

SD 0.165 0.125 1.024 0.956 0.964 0.964

Min 1.482 1.391 10.57 16.36 12.57 13.16

Max 2.342 1.852 15.42 20.46 16.55 17.45

2016 Mean 1.815 1.671 13.96 18.97 15.48 16.13

Median 1.808 1.685 14.1 19.13 15.69 16.28

SD 0.166 0.131 1.013 0.952 0.969 0.962

Min 1.504 1.437 10.82 16.4 12.57 13.25

Max 2.38 1.878 15.53 20.49 16.64 17.52

2017 Mean 1.872 1.733 14.05 19 15.55 16.19

Median 1.841 1.744 14.17 19.14 15.8 16.34

SD 0.159 0.135 1.013 0.943 0.969 0.958

Min 1.589 1.479 10.95 16.52 12.7 13.38

Max 2.425 1.924 15.66 20.52 16.72 17.59

2018 Mean 1.925 1.781 14.14 19.01 15.59 16.24

Median 1.902 1.802 14.29 19.13 15.81 16.41

SD 0.155 0.14 1.033 0.949 0.98 0.97

Min 1.668 1.475 10.99 16.52 12.64 13.37

Max 2.477 1.975 15.81 20.53 16.77 17.66
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annual growth rate of 0.23%; and in the western region, 
it varies from 0.803 to 0.828, with an average annual 
growth rate of 0.31%. Generally, the eastern region’s effi-
ciency level has always been at the top and has emerged 
as the “primary contributor” to the country’s efficiency. 
Provinces with poor efficiency, however, are primarily 
found in the west. This prevents the advancement of the 
Chinese healthcare system’s overall efficiency.

From an intra-regional perspective (shown in Fig. 2b), 
the HSE varies greatly between provinces, but the geo-
graphical classification does not reflect this intra-regional 
heterogeneity. For instance, in the eastern area, Guang-
dong’s efficiency is 0.918, whereas Hainan’s only aver-
ages 0.763. In the central region, Henan’s mean efficiency 
value is 0.897, whereas Jilin’s is only 0.816. Guizhou has 
an average efficiency score of 0.895 in the western region 

All variables are converted into logarithm

Table 4 (continued)

Period Input indicators (unit) Output indicators (unit)

Number of health 
technicians per 
1,000 population 
(Person)

Number of beds in 
medical and health 
institutions per 
1,000 population 
(bed)

Number of surgical 
procedures 
performed in the 
hospital (Persons)

Number of 
outpatient and 
emergency 
department visits 
(Person‑times)

Number 
of hospital 
discharges 
(Persons)

Output index after 
transformation 
with principal 
component analysis

2019 Mean 1.984 1.821 14.25 19.06 15.63 16.31

Median 1.96 1.845 14.41 19.24 15.83 16.44

SD 0.149 0.142 1.035 0.958 0.986 0.976

Min 1.74 1.475 11.08 16.52 12.63 13.4

Max 2.534 2.02 15.94 20.59 16.82 17.74

2020 Mean 2.04 1.858 14.2 18.94 15.47 16.2

Median 2.014 1.899 14.42 19.02 15.72 16.39

SD 0.131 0.141 1.029 0.951 0.984 0.971

Min 1.829 1.5 11.19 16.46 12.7 13.45

Max 2.534 2.073 15.9 20.38 16.72 17.62

Fig. 1 Distribution map of western, central, and eastern regions in China
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compared with Tibet’s 0.688. According to the analysis 
above, owing to variations in economic development and 
population distribution, different regions and provinces 
had different investment scales, allocation strategies, and 
management levels for medical and health resources, 
leading to spatial variations in the HSE.

Dynamic assessment of China’s HSE
To further explore the source of dynamic changes in the 
HSE, we used DEAP2.1 software to measure the tfpch of 
healthcare services in China from 2010 to 2020. The out-
comes are displayed in Table 7.

Overall, the average value of tfpch from 2010 to 2020 is 
1.016, with an average growth rate of 1.6%. Nevertheless, 
the tfpch growth rate for healthcare services varies over 
time, with the largest increase of 9.8% occurring from 
2011 to 2012 and the biggest decrease of 15.8% occur-
ring from 2019 to 2020. This indicates that the change in 
tfpch for healthcare services has not been constant. From 
the perspective of decomposition indicators, the average 
values of pech and techch are both more than 1 (1.017 
and 1.018), an increase of 1.7% and 1.8%, respectively. 
This indicates that both the pure efficiency change index 
and technology change index have shown an upward 
trend, which has jointly promoted the increase in TFP. 
The average values of sech and effch are both less than 
1 (0.981 and 0.998), a decrease of 1.9% and 0.2%, respec-
tively. The above analysis results indicate that there has 
been a small efficiency improvement owing to variables 
such as factor mix and management. Technical change 
may be considered the primary force behind developing 
the TFP of healthcare services in China.

In terms of time series, pech and effch increase by 3.4% 
and 1.3%, respectively, and sech decreases by 0.2% from 

2010 to 2011. However, techch increases by 3.8%, causing 
tfpch to rise by 5.1%. From 2011 to 2014, sech decreases 
by 1.9%, 3.2%, and 0.7%; pech increases by 4%, 6.5%, and 
1.7%, so effch increases by 2%, 3.1%, and 1%, respectively. 
Moreover, techch rises by 7.6%, 0.2%, and 1.7%, respec-
tively, and finally tfpch shows an upward trend. From 
2014 to 2019, sech and pech both fluctuate downward, 
so effch declines by 2.1% in 2018–2019, while techch and 
tfpch maintain an upward trend. Note that in 2019–2020, 
pech and sech decline by 0.1% and 4.9%, respectively, 
resulting in a 5% decline in effch, while techch declines 
by as much as 11.4%, and finally tfpch declines by 15.8%.

Time series analysis of China’s HSE
By analyzing the results of measuring the HSE in China, 
we can only obtain simple static conclusions, not 
describe the dynamic transferred evolutionary trend and 
overall temporal series process of the efficiency. Thus, in 
this study, the efficiency values for 2010, 2015, and 2020 
were selected at equal intervals, and the kernel density 
estimation function based on Gaussian normal distribu-
tion was applied to plot the kernel density distribution 
corresponding to them by Eviews 10 software (see Fig. 3). 
Accordingly, we analyzed the trends from the distribu-
tion location and shape. We identified the following fea-
tures during the observation period.

First, in terms of location, the highest peak of the ker-
nel density curve for 2010–2020 moves to the right, 
showing a significantly improved HSE. Second, in terms 
of the distribution profile, the height of the major peak of 
the distribution curve rises significantly, while the width 
narrows slightly, indicating a tendency for the absolute 
difference to expand. In other words, the level of HSE 
has gradually dispersed among the provinces, and the 
number of provinces that deviate from the average has 
gradually increased. Third, in terms of the extension of 
the curve, there is an obvious left trailing phenomenon 
in the kernel density curve, indicating that the difference 
in the efficiency of China’s healthcare services between 
high-level provincial areas (e.g., Beijing and Shanghai) 
and low-level provincial areas (e.g., Tibet and Ningxia) 
has expanded. Fourth, in terms of the polarization ten-
dency, the peaks and waves of the curve maintain a “dou-
ble-peak” state throughout the study period. Specifically, 
in 2010, the curve has a slight bimodal trend, indicating 
a polarization in the level of the HSE in China. By 2015, 
the bimodal distribution of efficiency has strengthened, 
with the efficiency level corresponding to the wave crest 
increasing compared with 2010. By 2020, the efficiency 
level corresponding to the wave crest has risen further, 
finally showing a robust polarization.

Table 5 Estimation of stochastic frontier production function

* p < 0.05; **p < 0.01; ***p < 0.001

parameter Cobb–Douglas 
function

Translog function

β0 18.817*** 14.309***

β1 0.303*** 2.477***

β2 0.128 0.346

β3 0.505**

β4 1.601***

β5 -2.687***

δ2 1.486*** 0.499***

γ 0.995*** 0.981***

η 0.014*** 0.010***

µ 2.433*** 1.250***

Log Likelihood 232.519 115.321
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Temporal evolution characteristics of China’s HSE
Traditional Markov chain analysis
Based only on the measured analysis of the HSE and 
temporal series static analysis, we cannot reflect the 
characteristics of the HSE shift over time and its prob-
ability. Therefore, we constructed the probability matrix 
of state transfer using the Markov chain model to study 
the changes in HSE transfer probability in different peri-
ods and categories. At the same time, by comparing the 
transfer probabilities, we can also discover the change 
pattern of HSE under different geospatial factors and 
clarify the influence of geospatial factors on different 

efficiency types of provinces. As shown in Table  8, the 
HSE levels of the 31 provinces in 2010–2020 were clas-
sified into four different categories based on quartiles. 
Specifically, the low levels (< 25%) are described as I; the 
medium–low levels (25–50%) as II; the medium–high 
levels (50–75%) as III; and the high levels (> 75%) as IV.

The diagonal components in Table 8 indicate the prob-
abilities of type invariance, revealing the stability of the 
HSE. Moreover, the shift probabilities between differ-
ent types are represented by non-diagonal components. 
On this basis, the dynamic transfer trends of the HSE 
were obtained when the spatial spillover effects were 

Table 6 Results of Chinese provincial HSE from 2010 to 2020

Prov 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Avg

Beijing 0.827 0.829 0.831 0.833 0.836 0.838 0.840 0.842 0.844 0.847 0.849 0.838

Tianjin 0.790 0.793 0.796 0.798 0.801 0.804 0.806 0.809 0.812 0.814 0.817 0.804

Hebei 0.869 0.871 0.873 0.874 0.876 0.878 0.879 0.881 0.883 0.884 0.886 0.878

Shanghai 0.839 0.841 0.843 0.845 0.847 0.850 0.852 0.854 0.856 0.858 0.859 0.849

Jiangsu 0.887 0.888 0.890 0.891 0.893 0.894 0.896 0.897 0.898 0.900 0.901 0.894

Zhejiang 0.879 0.881 0.882 0.884 0.886 0.887 0.889 0.890 0.892 0.893 0.895 0.887

Fujian 0.840 0.842 0.844 0.846 0.848 0.850 0.852 0.854 0.856 0.858 0.860 0.850

Shandong 0.895 0.897 0.898 0.899 0.901 0.902 0.903 0.905 0.906 0.907 0.909 0.902

Guangdong 0.912 0.913 0.914 0.915 0.917 0.918 0.919 0.920 0.921 0.922 0.923 0.918

Hainan 0.747 0.750 0.753 0.757 0.760 0.763 0.767 0.770 0.773 0.776 0.779 0.763

Liaoning 0.836 0.839 0.841 0.843 0.845 0.847 0.849 0.851 0.853 0.855 0.857 0.847

Eastern Region 0.847 0.849 0.851 0.853 0.855 0.857 0.859 0.861 0.863 0.865 0.867 0.857

Shanxi 0.817 0.819 0.822 0.824 0.826 0.829 0.831 0.833 0.836 0.838 0.840 0.829

Anhui 0.857 0.859 0.861 0.863 0.865 0.867 0.869 0.870 0.872 0.874 0.876 0.867

Jiangxi 0.844 0.846 0.848 0.850 0.852 0.854 0.856 0.858 0.860 0.862 0.864 0.854

Henan 0.890 0.891 0.893 0.894 0.896 0.897 0.898 0.900 0.901 0.903 0.904 0.897

Hubei 0.869 0.871 0.872 0.874 0.876 0.878 0.879 0.881 0.882 0.884 0.886 0.877

Hunan 0.865 0.867 0.868 0.870 0.872 0.874 0.875 0.877 0.879 0.880 0.882 0.874

Jilin 0.803 0.806 0.808 0.811 0.814 0.816 0.819 0.821 0.823 0.826 0.828 0.816

Heilongjiang 0.821 0.824 0.826 0.828 0.831 0.833 0.835 0.837 0.840 0.842 0.844 0.833

Central Region 0.846 0.848 0.850 0.852 0.854 0.856 0.858 0.860 0.862 0.864 0.865 0.856

Inner Mongolia 0.800 0.803 0.805 0.808 0.811 0.813 0.816 0.818 0.821 0.823 0.825 0.813

Chongqing 0.853 0.855 0.857 0.859 0.861 0.862 0.864 0.866 0.868 0.870 0.872 0.862

Sichuan 0.827 0.830 0.832 0.834 0.837 0.839 0.841 0.843 0.845 0.847 0.849 0.839

Guizhou 0.887 0.889 0.890 0.892 0.893 0.895 0.896 0.897 0.899 0.900 0.902 0.895

Yunnan 0.831 0.833 0.835 0.837 0.840 0.842 0.844 0.846 0.848 0.850 0.852 0.842

Shaanxi 0.851 0.853 0.855 0.857 0.859 0.860 0.862 0.864 0.866 0.868 0.870 0.860

Tibet 0.666 0.670 0.675 0.679 0.684 0.688 0.692 0.696 0.700 0.704 0.709 0.688

Gansu 0.839 0.841 0.843 0.845 0.847 0.850 0.852 0.854 0.856 0.858 0.859 0.849

Qinghai 0.805 0.807 0.810 0.813 0.815 0.818 0.820 0.822 0.825 0.827 0.830 0.817

Ningxia 0.721 0.725 0.729 0.733 0.736 0.740 0.743 0.747 0.750 0.754 0.757 0.740

Xinjiang 0.742 0.745 0.749 0.752 0.756 0.759 0.762 0.765 0.769 0.772 0.775 0.759

Guangxi 0.813 0.816 0.818 0.821 0.823 0.825 0.828 0.830 0.832 0.835 0.837 0.825

Western Region 0.803 0.806 0.808 0.811 0.813 0.816 0.818 0.821 0.823 0.826 0.828 0.816

Avg 0.830 0.832 0.834 0.836 0.839 0.841 0.843 0.845 0.847 0.849 0.851 0.841
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not considered. First, the dynamic transfer probability is 
smaller on the non-diagonal elements than on the diago-
nal elements. To be specific, the probabilities of type I, 
II, III, and IV remaining intact are 93.8%, 89.6%, 94.8%, 
and 100%, respectively; the transfer probability of type 
I to type II is 6.3%; the transfer probability of type II to 
type III is 10.4%; and the transfer probability of type III 
to type IV is 5.2%. The findings indicated that the HSE 
in China remained stable over the study period. In other 
words, mobility between groups was minimal, particu-
larly in the high-level areas. Second, the level of the HSE 
in China displays a clear upward trend. To be specific, 

the probability of a type II upward shift is 10.4%, and 
the probability of a type III upward shift is 5.2%. Both 
of these probabilities are higher than the probability of a 
downward shift. Third, transfers only occur in adjacent 
states, and it is difficult to make jump transfers (e.g., from 
a low-efficiency state to a high-efficiency state). This indi-
cates that although China is actively pursuing healthcare 
reform policies, the probability of a leapfrog shift in the 
HSE is extremely low, and its enhancement is a long-term 
and relatively stable process.

Spatial Markov chain analysis
By comparing the traditional Markov dynamic trans-
formation probability matrix with the spatial Markov 
dynamic transformation probability matrix, we could 
investigate the influence of the surrounding region on the 
probability of category conversion of a particular spatial 
unit’s HSE. The calculated results are shown in Table 9.

As can be seen from the table, first, the transfer of the 
HSE in China is significantly affected by spatial factors. 
Specifically, the transfer probability of type I to type II is 
6.3% when the spatial factor is not considered. Neverthe-
less, when spatial factors are considered, the probabilities 
of type I to type II are 6.9%, 6.9%, 8.3%, and 0%. Second, 
except for type IV, the stability of the HSE differs remark-
ably depending on the type of adjacency. Specifically, the 
transfer probability that type II is stable in adjacent types 
I, II, III, and IV is 100%, 92%, 85.7%, and 75%, respec-
tively; the probability that type III is stable in adjacent 
types I, II, III, and IV is 100%, 94.4%, 90.9%, and 96.9%, 

Fig. 2 The healthcare service efficiency of different provinces and regions. a presents the average healthcare service efficiency (geometric mean) 
of China’s mainland and the three regions from 2010 to 2020; b shows the average healthcare service efficiency (geometric mean) in 31 provinces 
of China from 2010 to 2020

Table 7 The Malmquist index and its decomposition for China’s 
healthcare services from 2010 to 2020

tfpch Total factor productivity change, techch Technical change, effch Technical 
efficiency chang, pech Pure efficiency, sech Scale efficiency

Year techch effch pech sech tfpch

2010–2011 1.038 1.013 1.034 0.98 1.051

2011–2012 1.076 1.02 1.04 0.981 1.098

2012–2013 1.002 1.031 1.065 0.968 1.033

2013–2014 1.017 1.01 1.017 0.993 1.027

2014–2015 1.002 0.999 1.015 0.984 1

2015–2016 1.042 1.003 0.995 1.008 1.045

2016–2017 1.045 0.991 1.006 0.986 1.036

2017–2018 1.034 0.982 1.002 0.98 1.015

2018–2019 1.038 0.979 0.999 0.979 1.016

2019–2020 0.886 0.95 0.999 0.951 0.842

Geometric mean 1.018 0.998 1.017 0.981 1.016
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respectively. The results reveal that the stability of HSE 
degrades with increasing spatial lag type by considering 
the spatial factors. Third, when a province is adjacent to 
a province with low HSE, the probability of the province’s 
HSE type decreasing increases; when a province is adja-
cent to a province with high HSE, the probability of the 
province’s HSE type rising increases. For example, the 
probability of upshifting is 10.4% on average for type II 
(Table  8), while it increases to 14.3% when adjacent to 
type III efficiency, and decreases to 8% when adjacent 
to low efficiency type. Thus, the transfer of HSE types in 
China is influenced by the spillover effects of neighboring 
types, and there is a “club convergence” phenomenon. In 
other words, the probability of an upward shift of a prov-
ince can be increased when it is adjacent to a high-level 
province. Specifically, the probability of type II upward 
migration with increasing neighbor type is 0, 8%, 14.3%, 
and 25%. This indicates that when the HSE is higher in 

a neighboring region, there is a positive spatial spillover 
effect. This is because high-level areas have more devel-
oped economies, more complete healthcare facilities, and 
higher levels of medical technology and management, so 
the HSE in these provinces is bound to remain at a higher 
level, which in turn forms a stronger positive radiation 
drive to neighboring areas [111]. Therefore, the positive 
spillover from high-level regions should be valued.

Spatial evolution characteristics of China’s HSE
Spatial correlation analysis
By analyzing the temporal evolution of the HSE in China, 
we can see that Chinese healthcare services show a bipo-
lar distribution of high and low agglomerations and 
that spatial factors have a major influence on the trans-
fer of efficiency. Thus, we used Stata software to calcu-
late the global Moran’s I values of the HSE in 31 Chinese 
provinces from 2010 to 2020 to investigate the spatial 
correlation of the HSE and its spatial agglomeration char-
acteristics in China. The results are shown in Table 10.

As seen from the table, we can find that the global 
Moran’s I values for all years during the observation 
period are more significant than 0 and pass the signifi-
cance test. This indicates that the spatial distribution of 
the HSE in China is positively correlated rather than dis-
tributed randomly. In addition, Moran’s I value climbs 
from 0.042 in 2010–2012 to 0.243 in 2019–2020, showing 
that spatial clustering increased yearly during the study 
period, while the positive spatial correlation of efficiency 
did not significantly decline.

Fig. 3 kernel density distribution of China’s healthcare service efficiency from 2010 to 2020

Table 8 Traditional Markov dynamic transformation probability 
matrix of the HSE in China from 2010 to 2020

I, II, III, and IV represent the four groups of the low level, medium–low level, 
medium–high level, and high level, respectively; N is the number of samples

t/t + 1 N I II III IV
 < 25% 25%–50% 50%–75%  > 75%

I 80 0.938 0.063 0.000 0.000

II 77 0.000 0.896 0.104 0.000

III 77 0.000 0.000 0.948 0.052

IV 76 0.000 0.000 0.000 1.000
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Local autocorrelation analysis
The global Moran’s I statistic can only confirm the level 
of the overall correlation of the HSE. Therefore, the years 
2010–2012, 2013–2015, 2016–2018, and 2019–2020 were 
selected as the study’s research objects. Moreover, Arc-
GIS software was used to visualize each province’s effi-
ciency clustering status in China. These include the H–H 
and L-L kinds, which point to a tendency of homogenous 
regional growth and exhibit some positive connections. 
By contrast, the H–L and L–H kinds show a negative cor-
relation and reflect heterogeneous development tenden-
cies among locations. The results are shown in Fig. 4.

Figure  4 demonstrates the spatial evolution of the 
HSE in China throughout the observation years. The 
agglomeration features display the presence of posi-
tive and negative spatial correlations. However, the 
regional homogeneity of efficiency development ten-
dency becomes increasingly pronounced with time. The 
number of provinces in the region of positive spatial 

correlation increases from 20 provinces in 2010–2012 to 
22 provinces in 2019–2020, accounting for 73.3%. This 
indicates that its positive spatial correlations are continu-
ously increasing, which is consistent with the finding of 
the global autocorrelation test.

Specifically, the H–H type agglomeration is mainly 
concentrated in the eastern and central regions, includ-
ing Jiangsu, Zhejiang, Hubei, Guangdong, and other 
provinces. This part of the region has its own efficient 
development of medical and health services, and at the 
same time, it drives the development of its neighboring 
provinces, showing a certain diffusion effect.

The L-L type agglomeration is mainly concentrated in 
the western region, which includes Tibet, Xinjiang, Inner 
Mongolia, Shanxi, and Jilin. Because this region is expe-
riencing an efficiency “depression,” there is a substantial 
amount of negative spatial spillover, which primarily 
takes the form of the L-L type agglomeration. Yunnan, 
Sichuan, Shaanxi, and other provinces are included in the 
“strip-like” distribution of the H–L type agglomeration. 
Note that despite successfully developing its healthcare 
services, this area does not have a distinct diffusion effect. 
The L–H type agglomeration still exhibits a fragmented 
distribution, with Chongqing, Guizhou, Shanxi, Tianjin, 
and other provinces included. This also suggests that this 
area of the region is significantly less efficient than the 
areas around it. There are apparent “center-periphery” 
characteristics, which demonstrate a specific polariza-
tion effect. In addition, the tendency toward regional 
heterogeneity in efficiency development is diminishing. 

Table 9 Spatial Markov dynamic transformation probability matrix of the HSE in China from 2010 to 2020

I, II, III, and IV represent the four groups of low-level, medium–low level, medium–high level, and high- level, and N is the number of samples

Spatial Lag t/t + 1 N I II III IV
 < 25% 25%–50% 50%–75%  > 75%

I I 29 0.931 0.069 0.000 0.000

II 16 0.000 1.000 0.000 0.000

III 5 0.000 0.000 1.000 0.000

IV 10 0.000 0.000 0.000 1.000

II I 29 0.931 0.069 0.000 0.000

II 25 0.000 0.920 0.080 0.000

III 18 0.000 0.000 0.944 0.056

IV 11 0.000 0.000 0.000 1.000

III I 12 0.917 0.083 0.000 0.000

II 28 0.000 0.857 0.143 0.000

III 22 0.000 0.000 0.909 0.091

IV 40 0.000 0.000 0.000 1.000

IV I 10 1.000 0.000 0.000 0.000

II 8 0.000 0.750 0.250 0.000

III 32 0.000 0.000 0.969 0.031

IV 15 0.000 0.000 0.000 1.000

Table 10 Global autocorrelation Moran’s I index of the HSE in 
China from 2010 to 2020

* is significant at the 10% level, **is significant at the 5% level, ***is significant at 
the 1% level

YEAR VALUE Moran’s I P

2010–2012 0.042 0.016**

2013–2015 0.093 0.007**

2016–2018 0.109 0.045**

2019–2020 0.243 0.014**
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Specifically, the number of provinces with L–H and H–L 
agglomeration shows a downward trend, with only nine 
of such provinces by 2019–2020, accounting for 29.03%.

Discussion
This was a comprehensive national study on the tempo-
ral-spatial evolution characteristics of the HSE in China. 
Unlike previous studies that focused on a certain local 
region [62, 111], we examined the variation and evolu-
tionary characteristics of the HSE in the temporal-spatial 
dimensions across the country. In addition, unlike other 
research in the same category [43, 112, 113], we further 
investigated the dynamic transfer tendency, spatial spill-
over effects, and spatial agglomeration characteristics 
of the HSE in China using the kernel density estimation 
model, Markov chain model, and exploratory spatial data 
analysis. The associated research findings can contribute 
to the guidance of healthcare reform in the modern era. 
The principal findings are as follows.

First, regarding efficiency assessment, the annual aver-
age value of the HSE in China ranged from 0.83 to 0.851, 

and the overall level was not high, similar to the conclu-
sions of most studies [114]. In terms of regions, the HSE 
in China had a decreasing distribution structure of “east-
central-west,” with uneven development among regions. 
In fact, there is no consensus among scholars on the HSE 
of different regions. Most studies have confirmed that the 
eastern region has the highest HSE and that its health 
systems operate better than those in the central and 
western regions [115]. Nevertheless, a few scholars have 
argued that the HSE in the central and eastern regions is 
much lower than that in the western regions [105]. This 
may be closely related to the national support policies. To 
improve the development of health care and health sta-
tus in the western region, the Chinese government has 
introduced preferential policies and invested significant 
resources [116]. Although existing research has surfaced 
different opinions on levels of HSE in different regions 
of China as a whole, they all concluded that there are 
apparent regional differences in HSE in China [8, 117], 
which agrees with the findings of this paper. The dis-
tinction in healthcare conditions is one explanation for 

Fig. 4 Spatial agglomeration characteristics of healthcare services efficiency in China from 2010 to 2020. a presents the spatial agglomeration 
characteristics of healthcare services efficiency in China from 2010 to 2012; b shows the spatial agglomeration characteristics of healthcare services 
efficiency in China from 2013 to 2015; c depicts the spatial agglomeration characteristics of healthcare services efficiency in China from 2016 
to 2018; d exhibits the spatial agglomeration characteristics of healthcare services efficiency in China from 2019 to 2020
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this. Generally, the medical infrastructure in the eastern 
region is considered more developed and ideal, capable 
of meeting the population’s medical needs with greater 
efficiency and timeliness [118]. By contrast, the western 
part is hampered by a shortage of medical personnel and 
equipment and poor accessibility of medical resources 
and services [119]. Economic development is another 
reason. The ability of a region to finance improvements 
in public health care, technological infrastructure, and 
efficiency is related to its economic development [120]. 
However, the central and western regions have had 
slower economic growth. The lack of public funding has 
also limited the practical advancement of efficiency to 
some extent [121].

Moreover, the results of the MI analysis indicate that 
the TFP for healthcare services in China is increasing at 
a rate of 1.6% per year, which is similar to the findings of 
other studies [122]. A further breakdown of TFP change 
components suggests that the observed rise is primarily 
attributable to the rising techch. At the same time, the 
decline in effch has prevented an effective increase in 
TFP in Chinese healthcare services. Further decomposi-
tion also reveals that the decline in effch itself is caused 
by a decline in sech, which declines on average by about 
1.2% per year. The decline in sech significantly offsets the 
improvement in pech observed during the period. Fur-
thermore, the trends of techch and TFP were consist-
ent, and it can be assumed that the changes in TFP were 
mainly affected by the changes in techch, which is con-
sistent with the findings of Leng et  al. [123]. Thus, it is 
reasonable to believe that technological advances deter-
mine the critical factors of TFP in Chinese healthcare 
services [124].

Second, in terms of temporal evolutionary character-
istics, regarding temporal series static analysis, China’s 
HSE showed an upward trend, from 0.83 in 2010 to 0.851 
in 2020. The existing literature has different views on the 
trends of the HSE in China. Several scholars have pos-
ited that HSE in China exhibits a slight downward trend 
[125]. However, the view of Wen et al. [43] is consistent 
with the findings of this study. We all agree that the HSE 
in China has been on an upward trend since 2010. The 
difference between high- and low-efficiency provinces 
of healthcare services in China has gradually expanded, 
forming a bipolar distribution of high and low agglomer-
ations, with the extent of differentiation increasing yearly. 
This is entirely different from the findings of Li [61], 
which may be related to the different conclusions drawn 
by Li from the rural perspective. Regarding dynamic 
transfer trends, the probability of maintaining the origi-
nal state of each province is greater than the transfer 
probability. Furthermore, China’s HSE has the stability to 
keep its state unchanged, making it difficult for efficiency 

changes to achieve leapfrogging, which is consistent with 
the findings of Chen [63]. After considering the spatial 
factor, we observed that the spatial transfer of efficiency 
states was active and that spatial spillover was prominent. 
Changes in efficiency states in neighboring regions had 
positive or negative spillover effects on the evolution of 
local efficiency states, which is similar to the findings of 
other studies [126]. Thus, localities need to pay atten-
tion not only to how to improve their HSE but also to the 
operating conditions and changing trends of the health-
care system in neighboring provinces to avoid the nega-
tive spatial impacts caused by them [127]. Positive spatial 
spillovers were observed in high-level provinces. When a 
province was neighbored by an area with high HSE, the 
likelihood of an upward shift of its HSE category was 
increased. One possible reason is that higher-efficiency 
provinces tend to perform better in terms of professional 
workforce, technological level, internal managerial expe-
rience, and socioeconomic development [128]. As inter-
provincial economic exchanges become more frequent, 
the surplus capital, health technology, and sophisticated 
experience of efficient provinces often radiate to neigh-
boring provinces. Thus, high-efficiency provinces had a 
significant positive spatial spillover effect, which is the 
same as the results of Wang [18]. This study examined 
the evolutionary characteristics of the HSE in China from 
a dynamic transfer probability perspective, which can 
help relevant government agencies monitor the HSE’s 
development dynamically.

Finally, in terms of spatial evolutionary characteris-
tics, there was a significant positive spatial correlation of 
the HSE in China, the spatial agglomeration was domi-
nated by homogeneous agglomeration (i.e., H–H or L-L 
agglomeration), and heterogeneous agglomeration (i.e., 
H–L or L–H agglomeration) tended to weaken. Specifi-
cally, the H–H agglomerations were mainly located in the 
eastern and central regions such as Shanghai, Zhejiang, 
Anhui, and Guangdong. The L-L agglomerations were 
mainly located in the western regions, such as Tibet and 
Qinghai. The H–L and L–H agglomerations were mainly 
located in the central and western regions, such as Yun-
nan, Shanxi, and Beijing. Over time, the spatial clustering 
of the HSE in China stabilized. Other scholars have con-
ducted similar studies [62, 129]. Workforce mobility and 
social welfare coverage, such as Medicare programs, con-
tribute to this geographical aggregation feature. In recent 
years, the demand for healthcare services in the eastern 
and central regions has significantly increased owing to 
people migrating from the west to the east in quest of 
wealth and opportunity [130]. However, in China, most 
provinces offer health insurance sharing, and insured 
people do not receive the same share of the money reim-
bursed from other types of risk sharing [131]. To acquire 
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good health insurance coverage, many migrant workers 
choose to receive their medical treatment, including out-
patient and inpatient services, in the eastern and central 
areas where they work [132, 133].

Conclusions and policy recommendations
In recent decades, especially after the implementation 
of the “New Health Care Reform” in 2009, China has 
achieved significant progress in the field of healthcare 
services. Nevertheless, the healthcare system in some 
areas has continued to operate inefficiently, the mismatch 
between high health inputs and low health outputs has 
become increasingly prominent. In this context, it is of 
positive significance to accurately assess HSE in China, 
grasp the temporal-spatial dynamic evolution character-
istics of the HSE, and provide valuable information to 
help policymakers improve the HSE and meet the grow-
ing demand for health care. Accordingly, we used a com-
prehensive SFA-Malmquist model to measure the overall 
level and dynamic sources of change in the HSE based 
on panel data from 31 Chinese provinces from 2010 to 
2020. Furthermore, the kernel density estimation model, 
Markov chain model, and exploratory spatial data analy-
sis were utilized to reveal the HSE’s temporal-spatial evo-
lutionary features in China.

Our findings indicate that (1) China’s HSE is generally 
at a moderate level. The HSE of each region has appar-
ent differences, presenting a decreasing characteristic of 
“East > Central > West.” (2) From 2010 to 2020, the TFP 
for healthcare services in China grew by 1.6% per year. 
This growth was driven by a 1.8% annual increase in 
technological progress (techch). (3) The level of the HSE 
in China has improved, and the difference between high-
efficiency areas and low-efficiency areas has gradually 
expanded, forming a bipolar distribution of high and low 
agglomerations; China’s HSE has the stability to maintain 
its own state unchanged, and the probability of leapfrog-
ging is low. (4) The temporal evolution of the HSE in 
China exhibits a clear spatial spillover effect, with high-
efficiency provinces showing a marked positive spillo-
ver effect on neighboring provinces and low-efficiency 
provinces experiencing a negative spillover effect. Thus, 
the “club convergence” phenomenon of “high efficiency 
concentration, low efficiency agglomeration, high levels 
of radiation, and low levels of suppression” has formed. 
(5) From 2010 to 2020, the spatial distribution of the HSE 
in China had a positive spatial correlation, and the spatial 
agglomeration was dominated by homogeneous agglom-
eration (i.e., H–H or L-L agglomeration), while heteroge-
neous agglomeration (i.e., H–L or L–H agglomeration) 
tended to weaken.

According to the aforementioned research results, this 
paper puts forward the following strategies and recom-
mendations to improve the HSE in China:

First, we should promote the Health China strategy 
and pay more attention to improving resource utiliza-
tion efficiency based on ensuring the growth of the total 
supply of medical and health resources. In addition, the 
government should coordinate the regional allocation of 
high-quality medical and health resources following the 
level of regional economic development and the demand 
for medical services to address the current imbalance in 
regional development. The government should provide 
some financial, technical, and human resource support to 
the central and western regions and appropriately step up 
their policy support for the western regions.

Second, to improve the total factor productivity of Chi-
na’s healthcare services, we should introduce high-tech 
medical equipment, improve the ability of medical and 
health technology innovation, strengthen the training 
mechanism of medical personnel and innovation capac-
ity, and emphasize the importance of optimizing the “soft 
power” of healthcare institutions.

Third, the government should make flexible use of 
inter-provincial “spillover effects” to reduce differences in 
the HSE across provinces. High-efficiency level provinces 
should take the initiative to break the inter-provincial 
interest barriers and policy barriers to give full play to a 
radiation-driven role. Low-efficiency provinces should 
learn from neighboring provinces with higher-efficiency 
healthcare management experience and combine their 
development conditions to seek a balanced point of coor-
dinated development between economic growth, health 
resource allocation, and HSE improvement, thus improv-
ing the efficiency gap of healthcare services with high-
efficiency provinces.

Fourth, we must further implement a coordinated 
development strategy for regional public health. Spe-
cifically, the H–H agglomeration areas should make the 
most of their healthcare advantages and implement the 
regional assistance model. To do so, they should take 
the initiative to share the excellent system management 
practices and technical lessons learned with low-effi-
ciency provinces; gradually realize the cross-regional 
sharing of highly qualified healthcare personnel, tech-
nology, knowledge, and other resources; and maximize 
the efficiency of healthcare services in the neigh-
borhood. By contrast, L-L agglomeration areas can 
improve their healthcare systems in terms of organi-
zational management and information technology by 
adopting successful strategies that can be applied to 
other regions. Then, they can maintain an optimal level 
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of healthcare personnel and technical capability and 
encourage the ongoing enhancement of healthcare ser-
vice efficiency by cooperative regional adjustments.

There were still some limitations to our research. 
First, the input and output variables in this study 
were chosen based on the relevant literature and data 
accessibility, potentially leading to bias in the research 
results. Second, the study and empirical analysis were 
carried out from a macro and overall standpoint, with-
out a detailed study of each province’s characteristics 
and detailed descriptions of specific provinces. Finally, 
this study focused on analyzing China’s HSE and its 
temporal-spatial evolution patterns, and did not con-
duct a specific analysis of the factors that influence 
HSE. Thus, the selection of indicators, influencing fac-
tors, and characteristics of individual provinces will be 
examined in depth in the future.
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